Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency.

Identifieur interne : 000277 ( Main/Exploration ); précédent : 000276; suivant : 000278

Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency.

Auteurs : Jin Seop Bak [Corée du Sud]

Source :

RBID : pubmed:26123084

Descripteurs français

English descriptors

Abstract

To verify the interconnective relationship between biodegradation efficiency and microfibril structure, recalcitrant rice straw (RS) was depolymerized using water soaking-based microbiological biodegradation (WSMB). This eco-friendly biosystem, which does not predominantly generate inhibitory metabolites, could increase both the hydrolytic accessibility and fermentation efficiency of RS. In detail, when swollen RS (with Fenton cascades) was simultaneously bio-treated with Phanerochaete chrysosporium for 12 days, the biodegradability was 65.0 % of the theoretical maximum at the stationary phase. This value was significantly higher than the 30.3 % measured from untreated RS. Similarly, the WSMB platform had an effect on the yield enhancement of ethanol productivity of 32.5 %. However, uniform exposure of fibril polymers appeared to have little impact on bioconversion yields. Additionally, the proteomic pools of the WSMB system were analyzed to understand either substrate-specific or nonspecific biocascades based on the change in microcomposite materials. Remarkably, regardless of modified microfibril chains, the significant pattern of 14 major proteins (|fold| > 2) was reasonably analogous in both systems, especially for lignocellulolysis-related targets.

DOI: 10.1007/s12010-015-1718-8
PubMed: 26123084


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency.</title>
<author>
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea, jsbwvav7@kaist.ac.kr.</nlm:affiliation>
<country wicri:rule="url">Corée du Sud</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea</wicri:regionArea>
<wicri:noRegion>Republic of Korea</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26123084</idno>
<idno type="pmid">26123084</idno>
<idno type="doi">10.1007/s12010-015-1718-8</idno>
<idno type="wicri:Area/Main/Corpus">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000248</idno>
<idno type="wicri:Area/Main/Curation">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000248</idno>
<idno type="wicri:Area/Main/Exploration">000248</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency.</title>
<author>
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea, jsbwvav7@kaist.ac.kr.</nlm:affiliation>
<country wicri:rule="url">Corée du Sud</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea</wicri:regionArea>
<wicri:noRegion>Republic of Korea</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied biochemistry and biotechnology</title>
<idno type="eISSN">1559-0291</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biotechnology (methods)</term>
<term>Cellulose (chemistry)</term>
<term>Cellulose (ultrastructure)</term>
<term>Lignin (metabolism)</term>
<term>Phanerochaete (metabolism)</term>
<term>Polymerization (MeSH)</term>
<term>Proteome (metabolism)</term>
<term>Proteomics (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biotechnologie (méthodes)</term>
<term>Cellulose (composition chimique)</term>
<term>Cellulose (ultrastructure)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Lignine (métabolisme)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Polymérisation (MeSH)</term>
<term>Protéome (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellulose</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lignin</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellulose</term>
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lignine</term>
<term>Phanerochaete</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biotechnologie</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Polymerization</term>
<term>Proteomics</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Cellulose</term>
<term>Dépollution biologique de l'environnement</term>
<term>Polymérisation</term>
<term>Protéomique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To verify the interconnective relationship between biodegradation efficiency and microfibril structure, recalcitrant rice straw (RS) was depolymerized using water soaking-based microbiological biodegradation (WSMB). This eco-friendly biosystem, which does not predominantly generate inhibitory metabolites, could increase both the hydrolytic accessibility and fermentation efficiency of RS. In detail, when swollen RS (with Fenton cascades) was simultaneously bio-treated with Phanerochaete chrysosporium for 12 days, the biodegradability was 65.0 % of the theoretical maximum at the stationary phase. This value was significantly higher than the 30.3 % measured from untreated RS. Similarly, the WSMB platform had an effect on the yield enhancement of ethanol productivity of 32.5 %. However, uniform exposure of fibril polymers appeared to have little impact on bioconversion yields. Additionally, the proteomic pools of the WSMB system were analyzed to understand either substrate-specific or nonspecific biocascades based on the change in microcomposite materials. Remarkably, regardless of modified microfibril chains, the significant pattern of 14 major proteins (|fold| > 2) was reasonably analogous in both systems, especially for lignocellulolysis-related targets. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26123084</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>08</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-0291</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>176</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Applied biochemistry and biotechnology</Title>
<ISOAbbreviation>Appl Biochem Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency.</ArticleTitle>
<Pagination>
<MedlinePgn>2290-302</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12010-015-1718-8</ELocationID>
<Abstract>
<AbstractText>To verify the interconnective relationship between biodegradation efficiency and microfibril structure, recalcitrant rice straw (RS) was depolymerized using water soaking-based microbiological biodegradation (WSMB). This eco-friendly biosystem, which does not predominantly generate inhibitory metabolites, could increase both the hydrolytic accessibility and fermentation efficiency of RS. In detail, when swollen RS (with Fenton cascades) was simultaneously bio-treated with Phanerochaete chrysosporium for 12 days, the biodegradability was 65.0 % of the theoretical maximum at the stationary phase. This value was significantly higher than the 30.3 % measured from untreated RS. Similarly, the WSMB platform had an effect on the yield enhancement of ethanol productivity of 32.5 %. However, uniform exposure of fibril polymers appeared to have little impact on bioconversion yields. Additionally, the proteomic pools of the WSMB system were analyzed to understand either substrate-specific or nonspecific biocascades based on the change in microcomposite materials. Remarkably, regardless of modified microfibril chains, the significant pattern of 14 major proteins (|fold| > 2) was reasonably analogous in both systems, especially for lignocellulolysis-related targets. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bak</LastName>
<ForeName>Jin Seop</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea, jsbwvav7@kaist.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Biochem Biotechnol</MedlineTA>
<NlmUniqueID>8208561</NlmUniqueID>
<ISSNLinking>0273-2289</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058105" MajorTopicYN="N">Polymerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26123084</ArticleId>
<ArticleId IdType="doi">10.1007/s12010-015-1718-8</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000277 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000277 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26123084
   |texte=   Bioprocess Evaluation of Water Soaking-Based Microbiological Biodegradation with Exposure of Cellulosic Microfibers Relevant to Bioconversion Efficiency.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26123084" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020